

LA-UR-19-27466

Approved for public release; distribution is unlimited.

Advances in Modeling Coal Pyrolysis, Char Combustion, and Soot Formation from Coal and Biomass Tar Title:

Author(s): Fletcher, Thomas H.

Lignell, David O. Richards, Andrew

Josephson, Alexander Jon Holland, Troy Michael

Intended for: The 9th International Symposium on Coal Combustion,

2019-07-21/2019-07-24 (Qingdao, China)

Issued: 2019-07-30

Advances in Modeling Coal Pyrolysis, Char Combustion, and Soot Formation from Coal and Biomass Tar

Thomas H. Fletcher

Chemical Engineering Department Brigham Young University Provo, Utah, USA 84602

Coauthors:

David O. Lignell, Andrew Richards, Alex Josephson*, Troy Holland*

*Currently at Los Alamos National Laboratory, Los Alamos, NM, USA

Motivation: Improved Simulations of Coal Boilers

- We think we know a lot about
 - ✓ Coal pyrolysis
 - ✓ Char oxidation
 - ✓ Ash transformation & deposition
 - ✓ Soot formation
 - ✓ Radiative heat transfer
 - ✓ NO_x and SO_x formation
 - ✓ Turbulence
 - ✓ Turbulence-chemistry interactions
- Do we really know all of this information?
- What else is there to know?

Outline

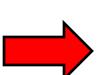
- 1. Volatiles Composition
- 2. Soot formation
- 3. Char Oxidation

Approaches to Gas-Phase Chemistry in Boiler Simulations

- Coal gas mixture fraction
 - 2 coal gas mixture fractions
- Eddy dissipation
 - Simple chemistry
 - Checks for mixing-limited reaction
- Assume pyrolysis gas species
 - Ignore turbulence?
 - Large eddy simulations?
 - Direct numerical simulations?
 - Combine with GRI-Mech or another large mechanism?

Coal Gas Mixture Fraction

- Assumes all gases from coal have the same elemental composition
 - Char has same elemental composition as pyrolysis gases
- Local chemical equilibrium in gas phase
- Generally used with PDF based on turbulent mixing
- Smith, P. J.; Thomas H, F.; Smoot, L. D., Model for pulverized coal-fired reactors. Symposium (International) on Combustion 1981, 18, (1), 1285-1293.
- Brewster, B. S.; Baxter, L. L.; Smoot, L. D., Treatment of coal devolatilization in comprehensive combustion modeling. Energy & Fuels 1988, 2, (4), 362-370.
- Zhou, M.-m.; Parra-Álvarez, J. C.; Smith, P. J.; Isaac, B. J.; Thornock, J. N.; Wang, Y.; Smith, S. T., Large-eddy simulation of ash deposition in a large-scale laboratory furnace. Proceedings of the Combustion Institute 2019, 37, (4), 4409-4418.


Two Coal Gas Mixture Fractions

- One mixture fraction for volatiles
- One mixture fraction for elements from char
- Each mixture fraction requires an elemental composition
 - Char assumed to be pure carbon
 - No distinction made for light gases vs. tar
- Local chemical equilibrium in gas phase
- Generally used with PDF based on turbulent mixing

[•] Flores, D. V.; Fletcher, T. H., The use of two mixture fractions to treat coal combustion products in turbulent pulverized-coal flames. Combustion Science and Technology 2000, 150, (1-6), 1-26.

Species Assumed for Light Gas and Tar

- Light gas:
 - $-CH_4$
- Tar:
 - $-\operatorname{Ben}^{2}$ $C_{6}H_{6}$
 - -A \sim ne (C_2H_2)
 - ene (C₆H₅CH₃)

- Use detailed gas reaction mechanism, such as GRI-Mech
- Best used in laminar flow

Light Gas during Flash Pyrolysis (Xu & Tomita, Fuel, 1987)

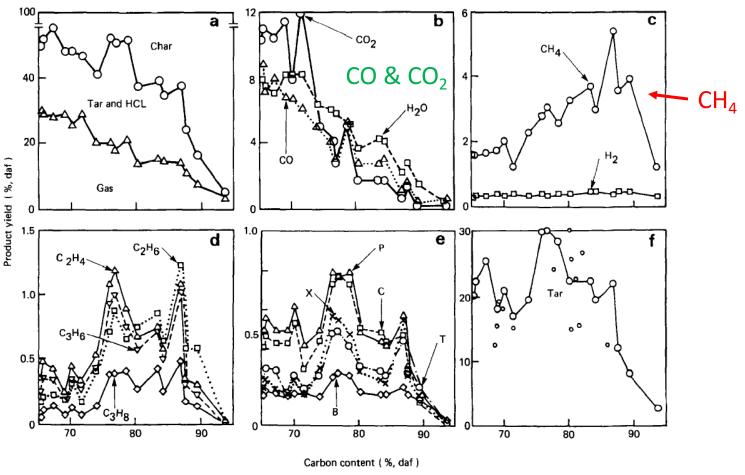
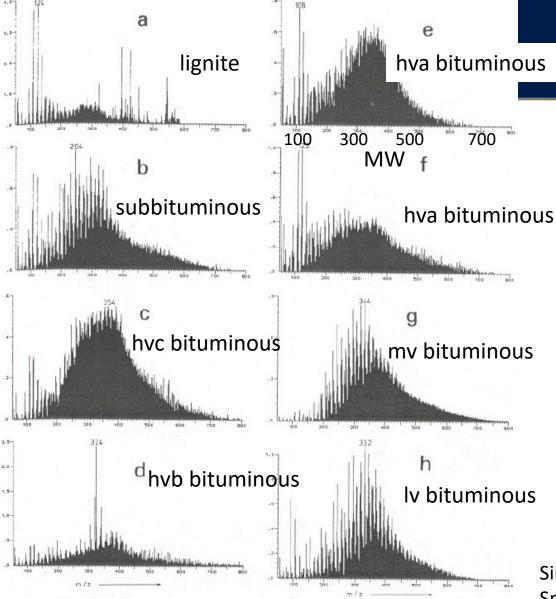
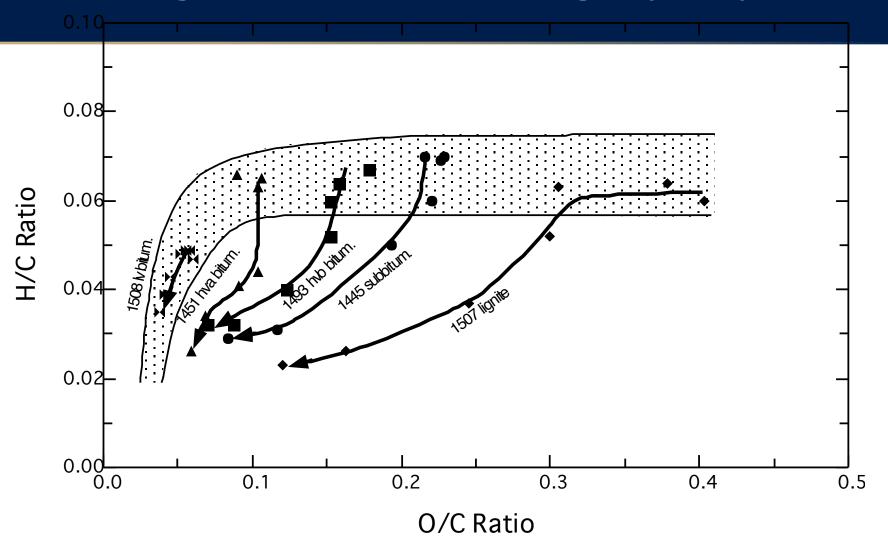


Figure 1 Effect of coal rank on yields of various products. (a) Gas including water, (tar + HCL) and char. (b) Oxygen-containing gases. (c) Methane and hydrogen. (d) C2-C3 hydrocarbons. (e) Hydrocarbon liquids: B, benzene; T, toluene; X, xylene; P, phenol; C, cresol. (f) Tar: O, Present values; O, Literature values

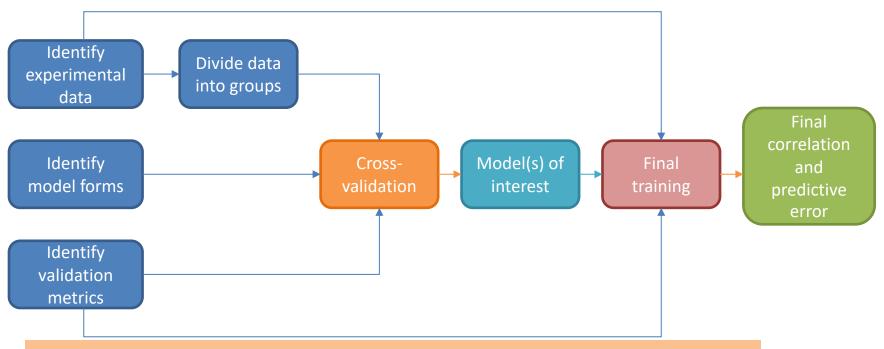



Figure 28. Integrated py-FI mass spectra (50-750°C) of Beulah-Zap (a, $\overline{M}_n = 292$), Wyodak (b, $\overline{M}_n = 338$), Illinois #6 (c, $\overline{M}_n = 368$), Blind Canyon (d, $\overline{M}_n = 336$), Lewiston-Stockton (e, $\overline{M}_n = 327$), Pittsburgh (f, $\overline{M}_n = 324$), Upper Fremont (g, $\overline{M}_n = 368$), and Pocahontas #3 (h, $\overline{M}_n = 359$). Heating rate 100 K/m (Simmleit et al., 1992).

Py-FIMS

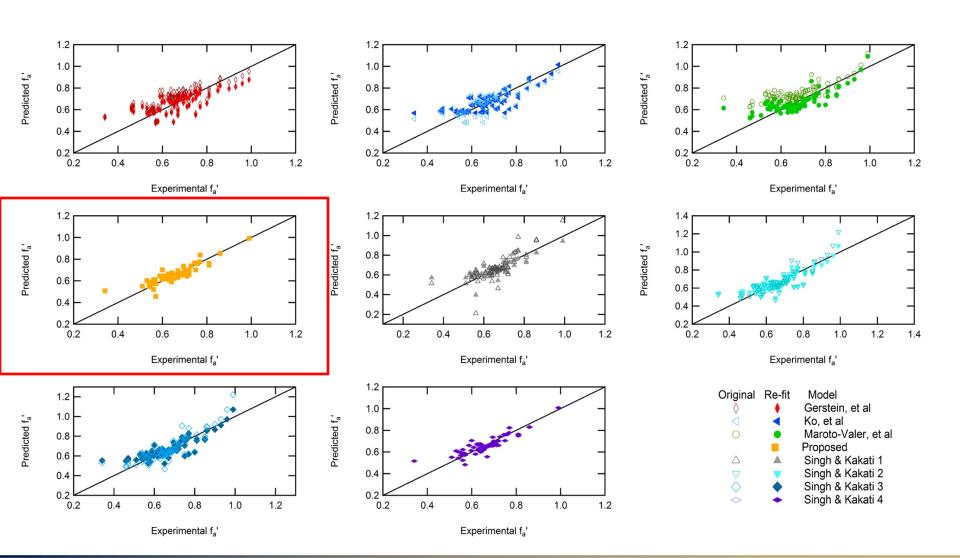
- FIMS of tars from the 8
 Argonne Premium coal samples
 - Lignite to lv bituminous
- Similar profiles of the "dark" area where most of the mass occurs
- Average MW of tar is ~350 amu
- Tails reach 800 amu

Simmleit et al., in Advances in Coal Spectroscopy, Plenum, New York, pp. 295-339 (1992)


Changes in Char during Pyrolysis

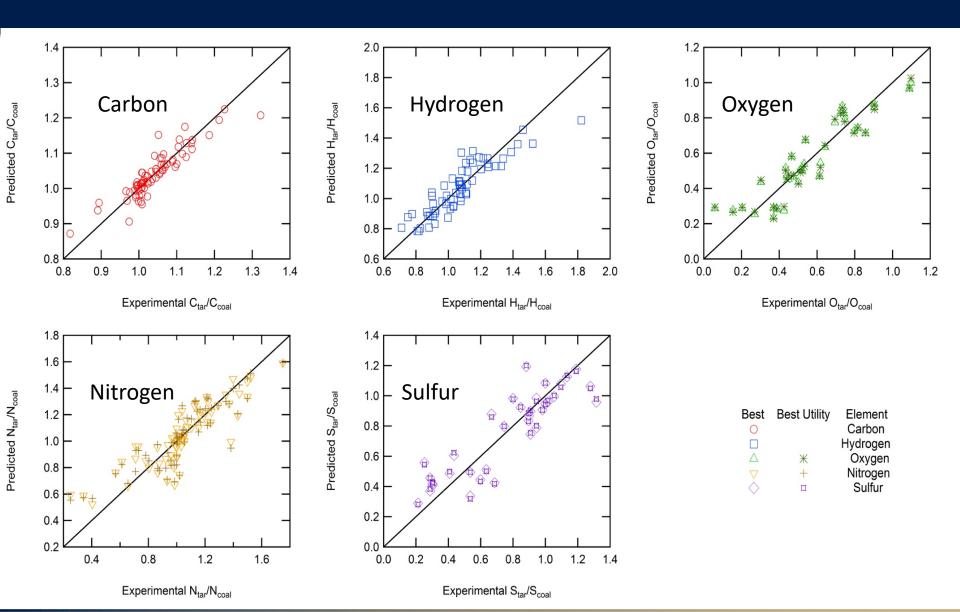
Correlation of Elemental Composition of Coal Tars and Chars

- Gathered sets of composition data that included:
 - Maximum temperature
 - Heating rate
 - Residence time
 - Parent coal composition
 - Ultimate analysis (Elemental composition)
 - Proximate analysis (volatiles, moisture, ash)
- Correlated vs. combinations of the above parameters, plus:
 - Chemical structure parameters (from ¹³C NMR or NMR correlation)
- Total of 172 model forms attempted for correlation


Cross-Validation Process

Cross validation:

- 1. Divide data into 10 separate groups
- 2. Use 9 of 10 groups to fit data
- 3. Use the unused group for independent evaluation
- 4. Repeat steps 2 & 3, rotating which is the independent group


Aromaticity Correlation

Best Coal Aromaticity Correlation

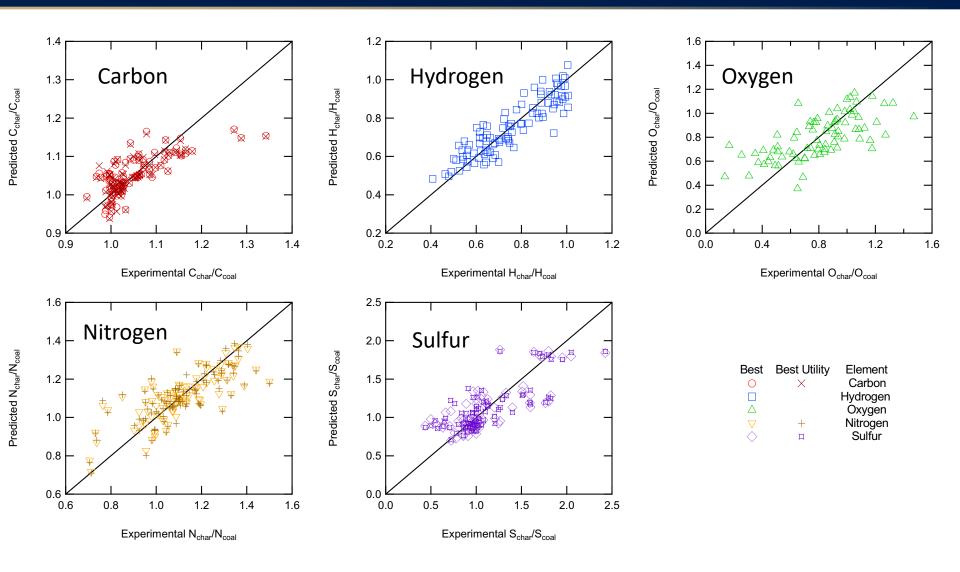
$$f'_{a} = c_{1} + c_{2}C_{coal} + c_{3}C_{coal}^{2} + c_{4}H_{coal} + c_{5}H_{coal}^{2} + c_{6}O_{coal} + c_{7}O_{coal}^{2} + c_{8}V_{ASTM} + c_{9}V_{ASTM}^{2}$$

Tar Correlations

Tar Correlations

(C & H in tar)

$$\frac{C_{tar}}{C_{coal}} = c_1 + c_2 T_{gas,max} + \frac{1}{c_3 T_{gas,max}^3 + c_4 T_{gas,max}^4} + c_5 t_{res} + \frac{1}{c_6 t_{res}^2 + c_7 t_{res}^4} + \frac{1}{1 + c_8 V_{norm}^3} + c_9 C_{coal} + \frac{1}{c_{10} C_{coal}^2 + c_{11} C_{coal}^4}$$


$$\begin{split} \frac{H_{tar}}{H_{coal}} &= c_1 + c_2 T_{gas,max} + c_3 t_{res} + c_4 t_{res}^2 + c_5 t_{res}^3 + \\ c_6 V_{norm} + c_7 V_{norm}^2 + c_8 V_{norm}^3 + c_9 M_{\delta,Genetti} + c_{10} M_{\delta,Genetti}^2 \end{split}$$

Where

 $V_{norm} = V_{meas}/V_{\infty}$

 $M_{\delta,Genetti}$ = MW of a side chain in the parent coal, from NMR correlation

Correlation of Coal Char

Char Correlations

(C & H in tar)

$$\begin{split} \frac{C_{char}}{C_{coal}} &= c_1 + c_2 T_{gas,max} + c_3 T_{gas,max}^{\frac{1}{2}} + c_4 T_{gas,max}^{\frac{1}{4}} + \\ c_5 t_{res} &+ c_6 t_{res}^{\frac{1}{2}} + c_7 t_{res}^{\frac{1}{3}} + c_8 t_{res}^{\frac{1}{4}} + c_9 \exp(V_{norm}) + c_{10} C_{coal} \\ &+ c_{11} C_{coal}^{\frac{1}{2}} \end{split}$$

$$\frac{H_{char}}{H_{coal}} = c_1 + c_2 T_{gas,max}^{c_3} + c_4 t_{res}^{c_5} + c_6 V_{norm}^{c_7} + c_8 H_{coal}^{c_9} + c_{10} V_{ASTM}^{c_{11}}$$

Application to Simulations

- 1. Estimate heating rate and gas temperature conditions
- 2. Select coal type and get coal composition data
- 3. Use correlations to get elemental composition of tar & char
 - gas composition by difference
- 4. Estimate heat of formation for tar, char, & gas
- 5. Use with equilibrium code & assumed shape PDF method
 - Possible to have 3 coal gas mixture fractions?
 - Compatible with soot model?

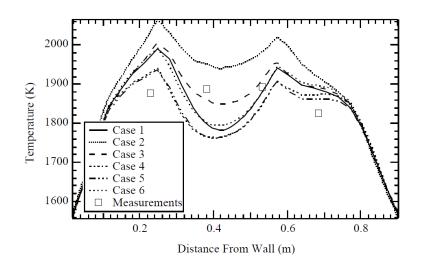
Outline

- 1. Volatiles Composition
- 2. Soot formation
- 3. Char Oxidation

Why Soot?

- Particles heavily impact radiative heat transfer
- Changes near-burner flame temperature and hence chemistry
- Health and environmental impacts

Gaseous Fuels

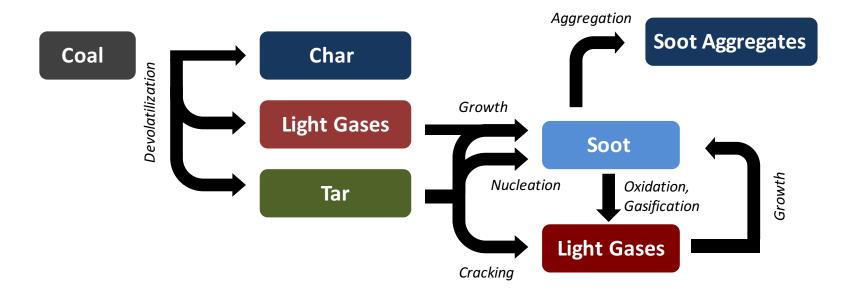

- Hydrocarbons form acetylene-like radicals
- Acetylene radicals form benzene, PAHs
- Soot precursors are PAHs

Solid Fuels

- Coal gives off tar during primary pyrolysis
- Tar is primary soot precursor
- Only small influence of acetylene mechanism

Previous Soot Model

(Brown & Fletcher, E&F 1998)

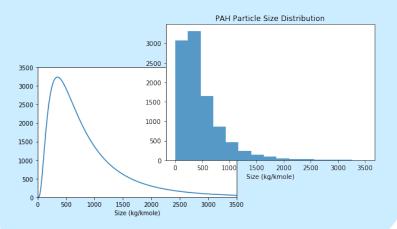


Predicted and measured gas temperatures in the FPTF at 144.8 cm above the inlet. (from Brown, 1997)

- CPD model to predict tar yield
- Empirical model for tar → soot
- Soot growth and oxidation modeled
- Near burner flame temperature decreased by 300 K when soot was modeled

Detailed soot model

(Josephson & Lignell, 2018)



- Key aspect: formation from tar
- Tar acts as a nucleation source, and is "closer" to soot
- Tar formed from coal devolatilization
 - Consumed by oxidation, gasification, cracking, deposition, soot nucleation
- Soot formed from tar nucleation, deposition, light gas nucleation, growth
 - Consumed by oxidation, gasification, (coagulation, aggregation)

Detailed soot model

Precursors

- Sectional model
- Transport 9 sections (5 in Arches)
- Fixed bins
- CPD model output
 - tar yield
 - MW distribution
- Coagulation (FM) \rightarrow soot

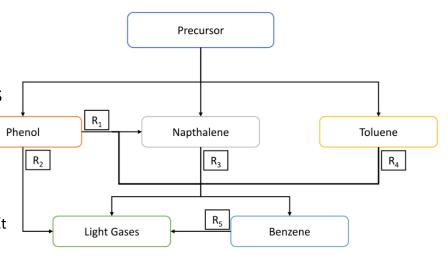
Soot

- MOMIC (moment method)
- Transport 6 moments (5 in Arches)
- Aggregation as in Balthasar & Frenklach (2005)
 - M<d>transported
 - Defines a shape descriptor

$$\langle d \rangle = \frac{\log \mu_{\langle d \rangle}}{\log \mu_1} \quad \bigcirc \quad \stackrel{2/3}{\longrightarrow} \quad \stackrel{1}{\longrightarrow} \quad \stackrel{1}{\longrightarrow$$

- Tar nucleation
- Tar deposition (collisional growth)
- HACA growth (C₂H₂)
- O₂+OH oxidation
- CO₂+H₂O gasification

Tar cracking model

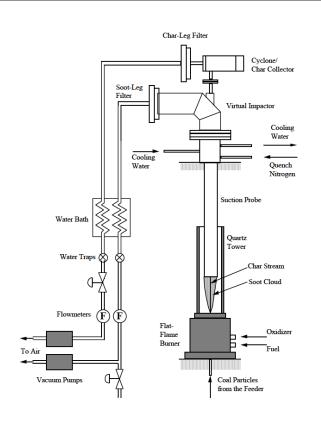

 Tar cracking mechanism is important for accurate modeling.

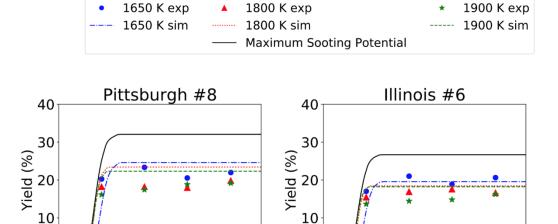
 Tar molecules include aliphatic components and heteroatoms

 Model based on that by Marias et al. Fuel Process. Technol. 149:139-152 (2016).

 Tars taken as consisting of 4 type fractions xt as a surrogate:

- Phenol, toluene, naphthalene, benzene
- Components react to others, or to gas phase
- Rates for each tar section are computed from xt, reaction rates, and fraction of MW cracked to gas
- Type fractions x_t taken as constant, precomputed for each fuel type/system

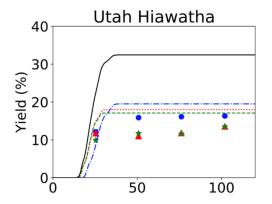



Reaction	Rates
$C_6H_6O \longrightarrow CO + 0.4C_{10}H_8 + 0.15C_6H_6 + 0.1CH_4 + 0.75H_2$	$R_1 = k_1 [C_6 H_6 O]$
$C_6H_6O + 3H_2O \longrightarrow 2CO + CO_2 + 3CH_4$	$k_1 = 1.00E7 \exp\left(\frac{-1.0E5}{RT}\right)$ $R_2 = k_2[C_6H_6O]$
$C_{10}H_8 + 4H_2O \longrightarrow C_6H_6 + 4CO + 5H_2$	$k_2 = 1.00E8 \exp\left(\frac{-1.0E5}{RT}\right)$ $R_3 = k_3 [C_{10}H_8][H_2]^{0.4}$
$C_7H_8 + H_2 \longrightarrow C_6H_6 + CH_4$	$k_3 = 1.58E12 \exp\left(\frac{-3.24E5}{RT}\right)$ $R_4 = k_4 [C_7 H_8][H_2]^{0.5}$
$C_6H_6 + 5H_2O \longrightarrow 5CO + 6H_2 + Ch_4$	$k_4 = 1.04E12 \exp\left(\frac{-2.47E5}{RT}\right)$ $R_5 = k_5 [C_6 H_6]$
C6116 + 31120> 300 + 0112 + C114	$k_5 = 4.40E8 \exp\left(\frac{-2.2E5}{RT}\right)$

Validation—Coal

50

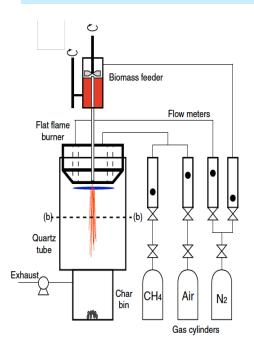
z (mm)

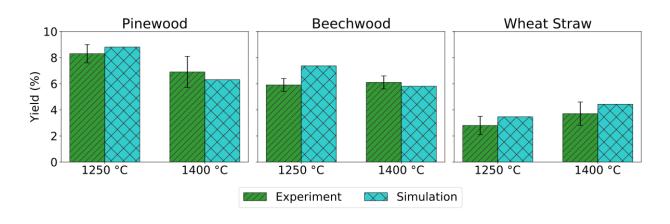

0

50

100

- Ma et al. (1996, 1998)
- CPD model predicts tar
- Soot model compared with Ma's data

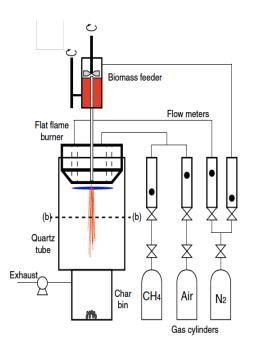



100

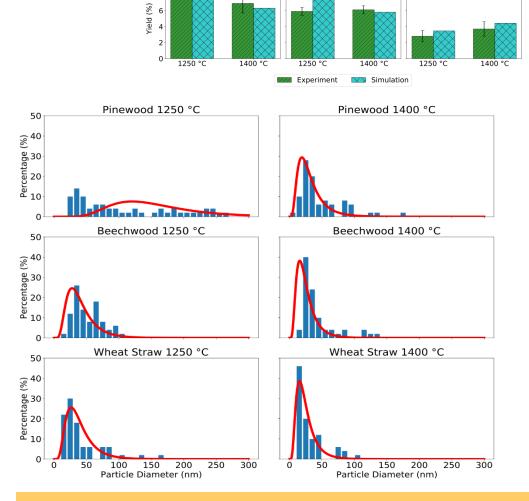
Validation—Biomass

(soot yields)

- Trubetskaya et al., Applied Energy, 171, 2016
- Fast pyrolysis drop tube reactor
- Two temperatures: 1250, 1400 °C
- Precursors from CPD-bio


Good agreement with measured soot yield for biomass pyrolysis! True prediction – no tunable parameters!

Trubetskaya et al., Applied Energy, 171, 2016


Validation—Biomass

(MW distributions)

- Trubetskaya et al., Applied Energy, 171, 2016
- Fast pyrolysis drop tube reactor
- Two temperatures: 1250, 1400 °C
- Precursors from CPD-bio

Trubetskaya et al., Applied Energy, 171, 2016

Pinewood

Beechwood

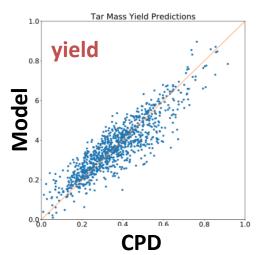
Wheat Straw

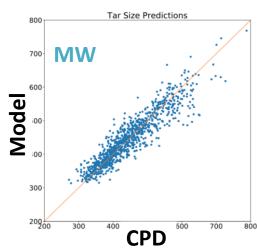
Reasonable agreement with soot size distribution!

Reduced Soot Model

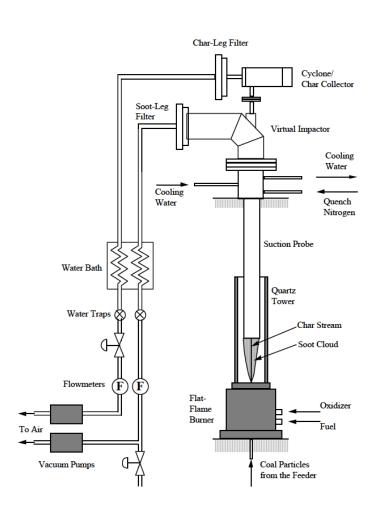
- Detailed model reduced for computational efficiency
 - 5-9 tar sections \rightarrow 1 section
 - Tansport Nt (#/m³)
 - 5-6 soot moments \rightarrow 2 moments
 - Transport Ns, Ys
 - Assume spherical particles
 - No "d" moment: M<d>
 - Most chemistry is the same
- Correlate tar cracking type fractions x_t
- Sooting potential model

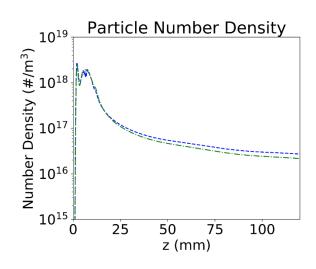
Sooting Potential Model

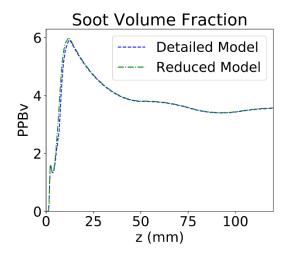

- CPD run many times varying input parameters
 - T: 800 < T (K) < 3000
 - P: 0.1 < P (atm) < 100,
 - O:C ratio: 0.01 < O:C < 0.35
 - H:C ratio: 0.3 < H:C < 1.1
 - Volatiles: 2 < %Vol < 80
- Correlation: tar yield and tar MW

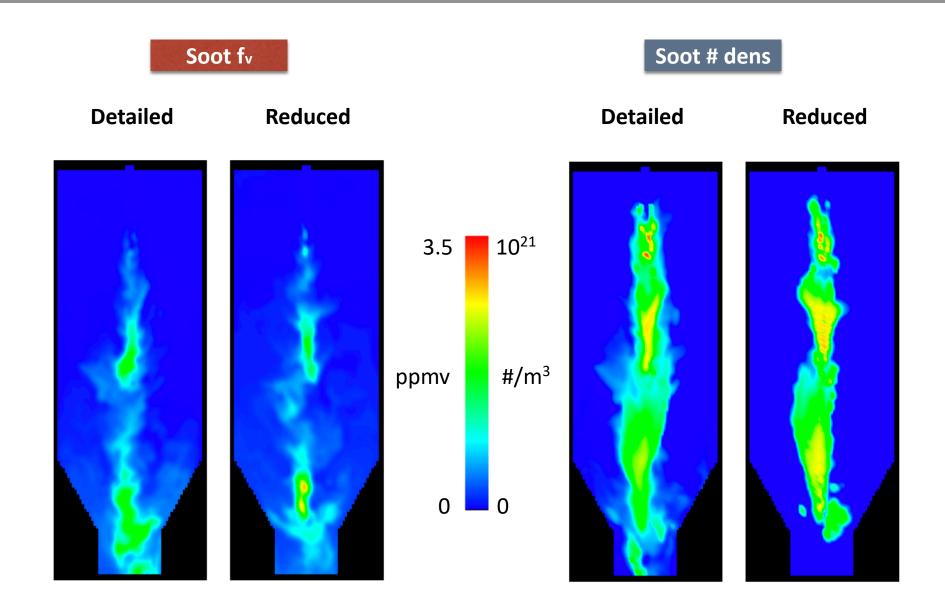

$$y_{tar} = \frac{-124.2 + 35.7P + 93.5O_C - 223.9O_C^2 + 284.8H_C - 107.3H_C^2}{+5.48V + 0.014V^2 - 58.2PC_H - 0.521PV - 5.32H_CV}$$
$$+ \frac{-303.8 + 52.4P + 1.55E3O_C - 2.46E3O_C^2 + 656.9H_C - 266.3H_C^2 + 15.9V}{+0.025V^2 - 90.0PH_C - 462.5O_CH_C + 4.80O_CV - 17.8H_CV}$$

$$m_{tar} = \frac{3.12E5 + 16.4T_g + 4.34E5O_C - 8.48E5H_C + 6.38E5H_C^2}{-361.3V - 0.221T_gV - 6.39E5O_CH_C + 1.91E3H_CV}$$


$$m_{tar} = \frac{-361.3V - 0.221T_gV - 6.39E5O_CH_C + 1.91E3H_CV}{753.6 + 0.042T_g + 83.9O_C - 1.77E3H_C + 1.20E3H_C^2 + 5.09E-3T_gP}$$


$$- 0.024T_gH_C - 5.27E-4T_gV + 0.513PV - 361.0O_CH_C + 3.83H_CV$$




Validation—flat flame burner

Arches simulation—OFC

Outline

- 1. Volatiles Composition
- 2. Soot formation
- 3. Char Oxidation

Wanted: Coal General Model of Char Oxidation

- Char properties are affected by many factors:
 - Parent coal properties
 - Size
 - Preparation conditions
 - Heating rate
 - Residence time
 - Pressure
 - Peak temperature
 - Oxidizing vs reducing conditions

Comprehensive Char Oxidation/Gasification Models

- CBK (Hurt, et al.)
 - Intrinsic Char-O₂ kinetics
 - Thiele modulus for pore diffusion
 - Swelling model
 - Mode of burning and other parameters
 - Simple annealing model
- CBK-G (Niksa et al.)
 - Similar to CBK, except for gasification by CO₂, H₂O, &
 H₂
- CCK (Holland & Fletcher)
 - Combined CBK and CBK-G
 - Improved annealing and swelling models

Sensitivity Analysis on CCK for Oxy-fuel Conditions

- Determine which submodels/parameters are most important
 - ▶ Not including intrinsic rates
- Global analysis varying all parameters simultaneously testing for both linear and non-linear sensitivity
- ▶ 27 parameters, 4 burn-out quartiles, 4 coals, 3 gas conditions, 2 quantities of interest, and 2 types of sensitivity analysis ≈5,000 measures of sensitivity extracted from 120,000 computational experiments

Parameter	Importance		
E _A (annealing act. energy)	0.74		
n ₁ (reaction order)	0.51		
d/d ₀ (swelling)	0.27		
α (mode of burning)*	0.20		
d _{grain} (ash grain size)	0.20		
σ_{EA} (distribution of E_A)	0.18		
t _r (residence time)	0.14		

Possible Solution: Annealing Model (CBK)

$$A_{ox} = f[precursor, T_p(t)] = A_0 f_{an}$$
Annealing factor

$$ln(A_0) = 10.96 - 0.07136 * C$$

$$\frac{dN_i}{dt} = -A_d \exp\left(-E_{d,i}/(RT_p)\right) N_i$$

$$f_{an} = \sum_{i} f_i = \sum_{i} N_i/N_{i,o}$$
Distribution of sites

Annealing during Pyrolysis vs Post-pyrolysis

During Pyrolysis

- Coal type
 - Chemical structure
 - Pyrolysis yields
- Heating rate
 - Pyrolysis yields
 - Swelling
 - Pore size
 - Ash distribution
- Peak temperature
 - Pyrolysis yields
 - Ash layer porosity

Post-pyrolysis

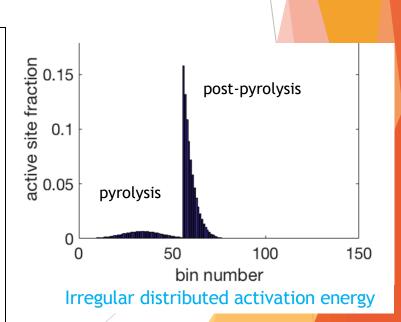
- Mode of burning
 - Constant diameter vs constant density
- Residence time
 - Changes in aromatic structure
- Changes with extent of conversion
 - Pore sizes
 - Ash layer
 - Distribution of reactivity
 - Most reactive stuff burns first

Annealing Model: Holland Extension

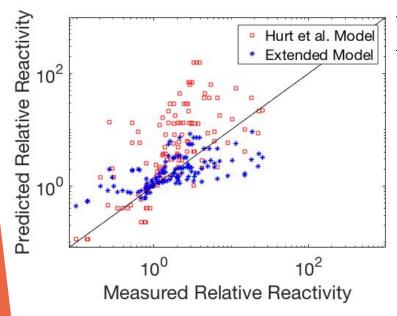
- The distributed activation energy is bimodal and irregular
- The distribution (not just the reaction rate) depends on
 - coal particle heating rate (HR),
 - \triangleright peak temperature (T_p) , and
 - \triangleright chemical structure (p_0)
- O₂ char conversion may be impacted differently by annealing than CO₂ and H₂O char conversion

$$\frac{df_{i}}{dt} = -A_{d} * exp\left(\frac{-E_{A_{anneal},i}}{RT}\right) * f_{i}$$

$$PDF(E_{A_{anneal},i}) = \frac{1}{E_{A_{anneal},i} * \sigma} \exp\left[\frac{1}{2}\left(\frac{\ln\left(E_{A_{anneal},i}/\mu\right)}{\sigma}\right)^{2}\right)$$


$$\mu = a * p_{0} + b * T_{peak} + c$$

$$\sigma = \frac{d}{p_{0}}$$


$$A_{d} = \frac{p_{0} * k_{0}}{\ln\left(\frac{1}{2} \ln \frac{1}{2}\right)} \qquad for HR \ge 10^{4}$$

$$A_{d} = \frac{p_{0} * k_{0}}{\ln\left(\frac{1}{2} \ln \frac{1}{2}\right)} \qquad for HR < 10^{4}$$

Parameter	Value
k_0	$1.398*10^{12} \text{ s}^{-1}$
a	0.356 ln(kcal/mol)
b	3.65* 10 ⁻⁴ ln(kcal/mol)
c	1.531 ln(kcal/mol)
d	0.679 ln(kcal/mol)

Annealing Model: Results by Holland & Fletcher

	Hurt et al. Model			Extended Model		
Model	Mean	Minimum	Maximum	Mean	Minimum	Maximum
Quantification						
Sum Squared	$1.45 \times 10^{5*}$	N/A	N/A	2.43×10^{3} *	N/A	N/A
Error						
Error Factor:	6.08	1.00	51.97	2.24	1.00	9.96
All Points						
Error Factor:	17.28	7.00	51.97	4.44	2.30	9.96
Least						
Successful						
Quartile						
Error Factor:	1.13	1.00	1.25	1.10	1.00	1.20
Most Successful						
quartile						
Error Factor:	2.78	1.25	6.50	1.63	1.21	2.27
Central						
Quartiles						

Error factor reduced from ~6 to ~2 using improved annealing model, including effects of:

- Coal type
- Heating rate
- Peak temperature

Conclusions

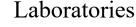
- Hope for better chemistry in coal combustion/gasification simulations
 - Correlation for elemental composition of tar & char
 - Not CH₄ and Benzene
- Better treatment of tar leads to improved simulation of soot
 - Generalized soot model
 - Improved local temperature (T_g) predictions
 - Improved T_g will lead to improved NO_x calculations

Conclusions (cont.)

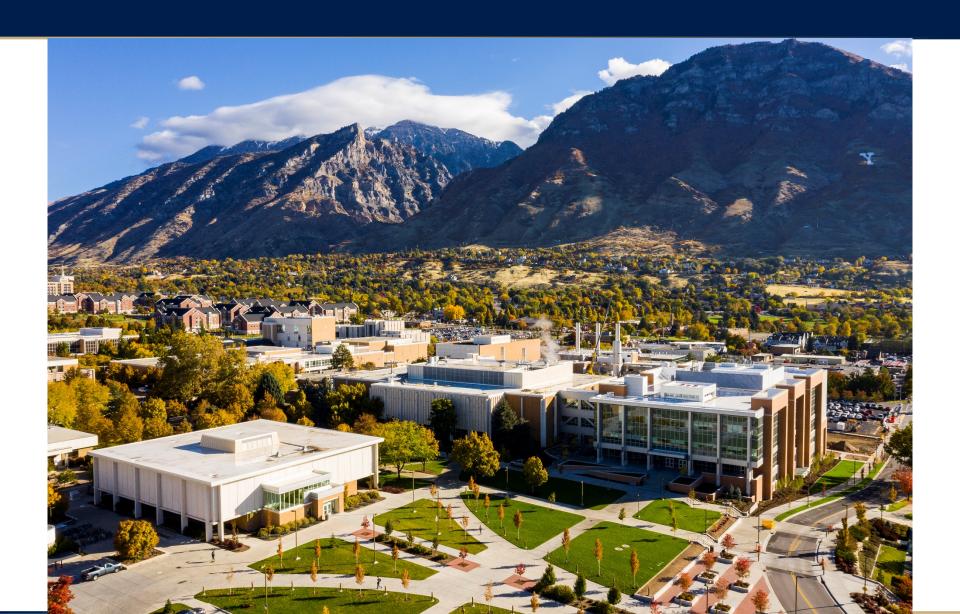
- Hope for coal-general char conversion model
 - Reactivity affected by:
 - Char formation environment
 - Residence time during char conversion
 - Extent of char conversion
 - Annealing model used to treat pyrolysis & postpyrolysis effects
 - Improved swelling model based on heating rate & coal type
 - Still work to do

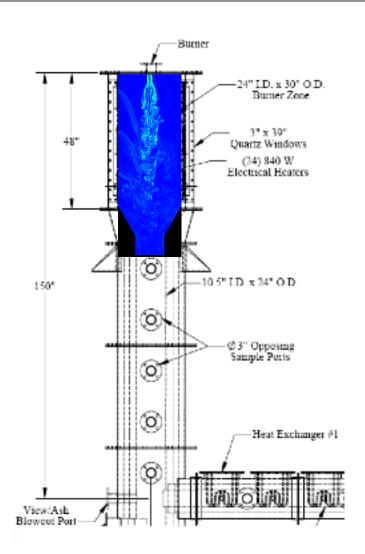
Acknowledgments

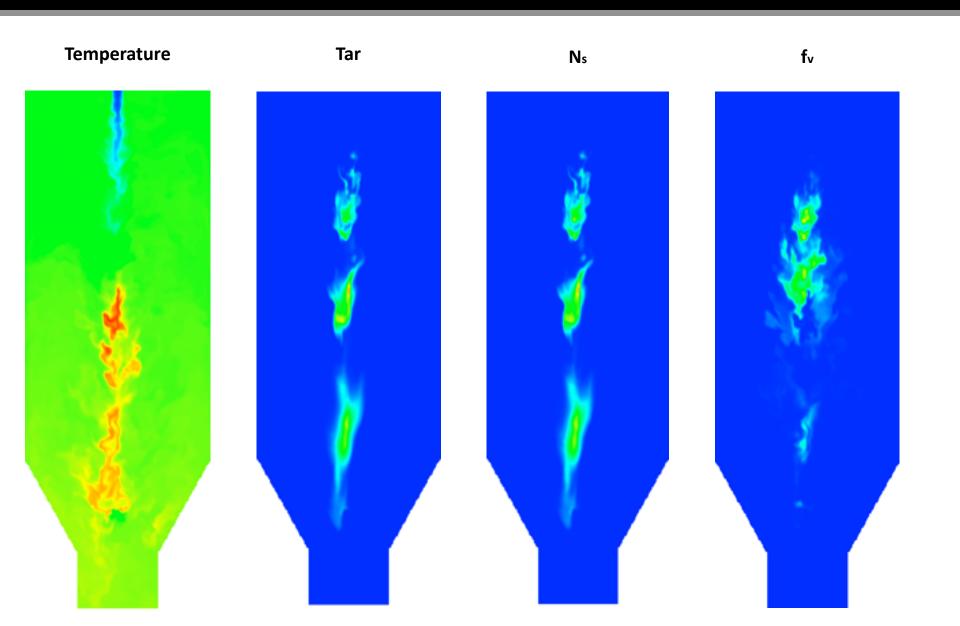
• This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002375


• Project work is a tri-university effort with support from the University of Utah, Brigham Young University, and University of California- Berkeley

• Project oversite and guidance is provided from three national labs: Lawrence Livermore, Sandia, and Los Alamos National

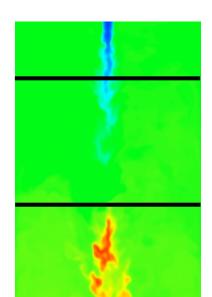



Thank You

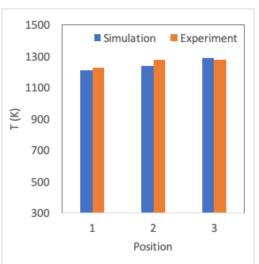


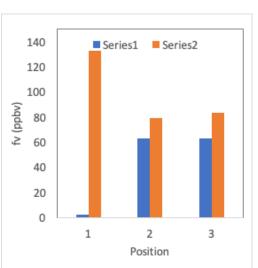
OFC Validation—Experiments

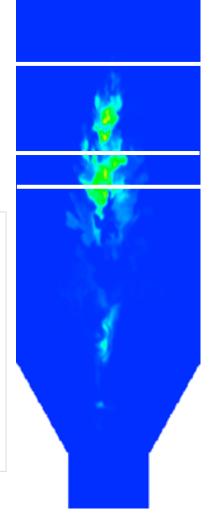
- Stimpson et al. Proc. Comb. Inst. 34:2885-2893 (2013)
- Oxy-coal combustion
- Utah Skyline high-vol Bituminous coal
- 36 kW firing rate
- Two-color laser extinction soot measurements (line-of-sight)
- Rich S.R. = 0.9



OFC Validation—Experiments




OFC Validation—Experiments


Temperature f_v

	Temperature (K)			Soot fv (ppv)	
	Simulation	Experiment		Simulation	Experiment
Pos 1	1208	1225	Pos 1	2	133
Pos 2	1236	1275	Pos 2	63	79
Pos 3	1285	1275	Pos 3	63	83

